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CRAPTER I 

INTRODUCTION 

The problems of determining theore t ica l ly  the conditions under 

which a th in  c i rcu lar  s h e l l  under ax ia l  compression becomes unstable, 

and of determining the postbuckling behavior of the s h e l l  have been of 

i n t e r e s t  t o  engineers and sc i en t i s t s  for nearly s i x t y  years. 

The f irst  theore t ica l  work on t h i s  problem w a s  done by such 

noted invest igators  as Lorentz (I), Timoshenko(*), Southwell (3) , and 

F l k g e ( 4 ) .  

buckling load. This i s  the load a t  which an equilibrium configuration 

d i f f e r ing  from the i n i t i a l  configuration by an inf in i tes imal  displace- 

ment can be found. I n  other words, it i s  the load a t  which a bifurcat ion 

i n  the load-axial  def lect ion curve ex i s t s .  

They found what might be cal led the c l a s s i ca l  or  E u l e r  

When a cy l indr ica l  s h e l l  buckles, the change i n  the poten t ia l  

energy of the s h e l l  can be expressed as a sum of second, t h i rd ,  and 

fourth order terms i n  the radial displacement, wr . The equilibrium 

equation i n  the radial  d i rec t ion  can be found by s e t t i n g  the f irst  

var ia t ion  of t h i s  addi t ional  potent ia l  energy equal t o  zero. 

the second order terms a re  used, the resu l t ing  equilibrium equation 

i s  l inear .  

of axial load for which a nontr ivial  so lu t ion  e x i s t s  is  the Euler load, 

If only 

The r e su l t i ng  system i s  homogeneous, and the lowest value 

PE . 
given by 

I n  terms of force per u n i t  length of s h e l l  circumference t h i s  i s  

-1- 
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(For a solut ion of the l i nea r  problem, see Timoshenko and G e ~ - e ( ~ ) . )  

Experimental trork, however, indicates  t h a t  cyl indrical  she l l s  

under axial  compression f a i l  a t  values of a x i a l  s t r e s s  only one tenth 

t o  nine tenths the Euler load,  Along with t L i s  sharp reduction i n  the 

ac tua l  s t rength of the s h e l l  a wide range of tca+,fer i s  a l s o  observed. 

This i s  indicated i n  Figure 1.1. (Donne11 and Kan (14) ~ ) 

EXPERIMENTAL DATA 

1000 2000 3000 
01 

0 

R 
h 

Figure 1.1. Range of Experimental 'irallxs f o r  the 
Buckling Load a 

Thin cylinders under axial load buckle  e i t h e r  geceral ly  i n t o  

a pa t te rn  consisting of a large number of circinf'erE2tial aEd a x i a l  rows 

of diamond-shaped buckles, or they buckle locally into i so la ted  buckles 

or i n t o  only a few a x i a l  rows of circumferential buckles, A s  buckling 

progresses the number of circumferential bwkles  (P) decreases, the 

value of n being near t en  f o r  cylinders which buckle i.n th.e manner 

described. The f ina l  buckled shape is  &served t o  consis t  of regions 

of small curvature connected by ridges and valleys of very high curvature. 

This i s  eas i ly  seen i n  the photographs sbowr! by Fwg a3d Scch_ler(6) and by 
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Lundquist(7). 

work 

This i s  the postbuckled shape which i s  analyzed i n  t h i s  

A n  explanation of the discrepancy bet.?Ter_ theory and experiment 

has been attempted by several  invest igators ,  D o n ~ e l l  ( 8 ) ,  i n  1934, was  

the  f irst  t o  use a f ini te-def lect ion analysis  which included the e f f e c t  

of i n i t i a l  imperfections. Unfortunately h i s  work w a s  not general enough 

and a t t r ac t ed  therefore only limited a t ten t ion .  

i n  1941, extending the idea of Donnell, a l so  considered f i n i t e  displace- 

ments from the prebuckled cylinder. They found equilibrium states which 

could e x i s t  a t  values of a x i a l  s t r e s s  much l e s s  than the buckling load. 

This method w a s  ref ined and extended among others by Leggett and Jones 

( 9 )  'iron Gr&n and Tsien , 

(10) , 
Michielson'''), Kempner(12) and f ina l ly  by U ~ O & ~ )  i n  1963 -0th 

showed t h a t  a possible equilibrium state can e x i s t  vb.en the external  load 

i s  only ten per cent of the E u l e r  load. 

An answer t o  the question of hoM the s h e l l  reaches i t s  post-  

buckled state,  which seems t o  a c e o u t  f o r  %he wide s c a t t e r  i n  experi- 

mental data ,  w a s  put fo r th  by Donneli  sLnd %~r: (14) i n  1950, 

l a t e d  an i n i t i a l l y  imperfect she l l ,  the i.11 t i a l  inperfections being of 

the same form as the buckled shape, They determined t h a t  the s h e l l  w a s  

very sens i t ive  t o  these imperfections, A s e r i e s  of load-deformation 

curves were found f o r  various values of the imperfection parameter. 

(See Figure 1.2. )  

They postu- 

Koiter(15) demonstrated the extreme sens i t i v i ty  of cy l indr ica l  

she l l s  t o  imperfections by showing t h a t  the curve giviEg the buckling 

load as a function of the imperfections amplitude may have i n f i n i t e  slope 

as the la t te r  approaches zero. 



-4- 

1.0 
1 

Very Imperfect She l l  

Figure 1.2.  Effect of Shell  Imperfections on the Buckling Behavior. 

Several invest igators  have investigated tke dynamics of the 

postbuckling problem, such as  Kadashevich and Pertsov'") , Agamirov and 

Volmir(17), and Yao (18)* The resu l t s  of these studies have shed no 

s igni f icant  l i g h t  on the basic  controversy and a re  therefore not d i s -  

cussed here any fur ther .  

It i s  of significance i n  conr_ection w i t h  the present work t h a t  

none of the previous investigations ci ted here represent exact solutions 

t o  the relevant s h e l l  equations, whose nonlinearit,y h.as made an exact 

analysis  prohibi t ively d i f f i c u l t .  Instead, the approach which has been 
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u t i l i z e d  most widely t o  obtain approximate solutiom has been t o  set  up 

an  expression f o r  the potent ia l  energy and t o  minimize tha t  expression 

within an aggregate of kinematically admissible def lect ion functions. 

This i s ,  of course, a permissible scheme, provided t h a t  the number of 

function considered i s  suf f ic ien t ly  large and the functions themselves 

represent good approximations. I n  par t icular ,  i f  the ac tua l  deflected 

surface i s  su f f i c i en t ly  smooth, an aggregate of trigonometric functions 

is  usually workable. If sharp discontinuities i n  the functions or 

t h e i r  der ivat ives  occur convergence becomes slow or altogether question- 

ab le .  

This phenomenon has been observed i n  the present case, i n  

which the addition of ever increasing numbers of terms has led  t o  

approximate solutions of formidable algebraic complexity wi%hout d i s -  

playing sa t i s fac tory  convergence a s  t h e  deflections become large.  It 

may be conjectured t h a t  t h i s  i s  a basic shortcoming of the method selected.  

Indeed , the observed presence of diamond-shaped buckles Peparated by 

sharp creases (or in te rna l  "boundary layers", as discmsed later on) 

raises the question of the s u i t a b i l i t y  of the representation by an 

aggregate of simple trigonometric waves. 

The method employed herein is also approximate, but  i n  a d i f -  

fe ren t  sense. Energy techniques are  not employed. Instead, the s h e l l  

equations are solved approximately through perturbation expansion i n  

terms of a small parameter which is related t o  the thickness of the she l l .  

Since t h i s  parameter (a f te r  a number of order-of-magnitude assumptions 

based on observed behavior) appears as the coeff ic ient  of the highest  
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derivat ives  i n  the equations, the expansion i s  singular and gives rise t o  

boundary layers  separating "fields" of r e l a t ive ly  smooth buckles of vanish- 

ing Gaussian curvature. Aside from certain inaccuracies i n  sat isfying some 

of the kinematic boundary conditions (believed t o  be of minor significance),  

the solutions obtained, though not unique, may therefore be considered 

exact i n  the l i m i t ,  that is, as the she l l  thickness approaches zero. 

The idea of using a boundarylayer approach t o  problem i n  

s h e l l  s t a b i l i t y  i s  not new. 

problem of the buckling of a spherical  cap by using a boundary layer  

Fr iedr ichs( lg) ,  i n  1941, investigated the 

analysis.  Other ea r ly  work using boundary layer  analyses i n  the investiga- 

t i on  of the  behavior of st ructures  was done by Friedrichs and Stoker (20,211 

i n  connection w i t h  the  problem of a circular p la te  under uniform rad ia l  

compression. 

p la te  with free edges has been investigated by Fung and Wittrick (22) and 

by Masur and C h a n g .  (23) There are a l s o  examples of boundary layer  analyses 

i n  the invest igat ion of problems of l inear  she l l  theory. See, f o r  example, 

the recent  work of Reiss,(24'25) and Johnson (26) i n  the treatment of the 

l i nea r  problem of a cyl indrical  s h e l l  under ax ia l  compression. 

More recent ly  the development of a boundary layer  i n  a f l a t  

The development of i n t e rna l  boundary layers  i n  cyl indrical  s h e l l  

buckling i s  suggested by the observed buckled shape. 

a re  those regions which include the valleys and ridges which delineate 

the individual buckles. 

strains i n  the boundary layers ,  but that  the bending w i l l  be almost 

negligible i n  the "f ie ld"  (the region remote from the boundary layers ) .  

This behavior has been noted by several invest igators  

Fung and Sechler(6)).  

The boundary layers  

It is  expected tha t  there w i l l  be large bending 

(For example, see 
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The present investigation is  i n  the s p i r i t  of von K&r& and 

Tsien i n  that equilibrium s t a t e s  for  the postbuckled s h e l l  are sought. 

An i n i t i a l l y  perfect  cylinder i s  postulated, although the results can 

also be shown t o  be val id  for  an imperfect cylinder. Another feature 

of t h i s  work i s  that by considering each buckle as a shallow s h e l l  

both the loca l  and general buckling problem are investigated s i m u l t a -  

neously. 



CHAPTER I1 

DERIVATION OF THE SKELL EQUATIONS 

Consider a s h e l l  of constant thickness, h , whose i n i t i a l  

middle surface is defined by the relat ionship 

The coordinates x and s are chosen t o  l i e  i n  a reference plane Ill ; 

the distance of the middle surface from Ill being W . W i s  measured 

i n  the z di rec t ion  which is normal t o  Ill (Figure 2.1).  

n1 

uckled Cylinder 
w = W(x,.) 

Figure 2.1. Axial Section Showing the Prebuckled Panel. 

It i s  assumed tha t  for the shel l  considered 

-8- 
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i n  which 1 i s  a representative she l l  dimension and WmX i s  the 

maximum rise of the s h e l l  from 

ca l led  a shallow she l l .  

think of it as  a p l a t e  with an  ini t ia l  def lect ion.  

The Love-IUrchoff assumptions concerning the deformations 

Ill . This type of s h e l l  is  commonly 

Another way of considering the s h e l l  i s  t o  

of the s h e l l  are =de. 

Also, the volume element of the  she l l  i s  taken t o  be 

The shear  deformation is  therefore  neglected. 

dv =dx ds d~ 

which i s  consis tant  with Love's first approximation and the usual 

shallow s h e l l  theory. 

It follows from the Love-Kirchoff assumptions and the assump- 

t ion  (2.2) that the displacement components of a general  point  i n  terms 

of the middle surface displacement components are 

4 w (x,s,z) = 'N 

a = x,s 

i n  which the tangent ia l  displacements % and the normal displacements 

w of the middle surface a re  functions of x and s only. (The summa- 

t i o n  convention is  adopted f o r  the subscr ipts  a, f3 and 7 ; the range of 

subscr ip ts  i s  indicated i n  (2.4) .) 
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For the deformations being considered the displacement components 

u 

component w , t h a t  is, 

a r e  taken t o  be of an order-of-magnitude smaller than the displacement a 

(2 .5)  

i n  which n is  an integer  such tha t  

As a consequence of the order-of-magnitude assumptions which 

have been made a shallow s h e l l  theory with def lect ions of the order-of- 

magnitude of the s h e l l  r i s e  is  being considered. For a c i rcu lar  

cy l indr ica l  s h e l l  the shallow s h e l l  being considered i s  one of the 

diamomkhaped buckled panels. For such a s h e l l  n i s  taken t o  be 

the number of circumferential buckles. 

The strains are  expressed i n  te rms  of the middle surface dis-  

placements as follows, 

I n  the usual theory i n  which w-O(h) the terms wYa w , ~  and - 
. For the displacements considered here, however, 

ZW,@ i s  O(n$) while w,* ; thus the term Z W , ~  i s  

ZW,@ 

* The expression 
values of t he  displacement approximately n times the s h e l l  thickness 
are expected. 

w w O ( n h )  should be interpreted t o  mean t h a t  m a x i m u m  
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Of an order-of-magnitude smaller than the other terms. 

of the higher derivatives involved th i s  t e r m  becomes s igni f icant  i n  a 

boundary layer  whereas other terms which have been neglected i n  (2.7) 

and which are of similar order t o  the bending t e r m  involve lower order 

der ivat ives  and remain small when compared t o  the membrane term, even 

i n  the boundary layers. 

However, because 

For a given load the difference i n  the poten t ia l  energy between 

the buckled and unbuckled s ta te  i s  given by the expression 

are the addi t ional  s t r e s s  components which arise during 
A 

@ 
i n  which 7 

buckling and T& are the prebuckling stress components. T i s  a vector 

which represents the applied surface t rac t ions  and 
4 
U i s  a vector which 

represents the displacements through which the t rac t ions  a c t .  

The work done by the external t rac t ions  i s  equal t o  the work 

of the prebuckling s t r e s ses  act ing through the l i nea r  portion of the 

addi t ional  s t r a i n s .  The poten t ia l  energy change can therefore be w r i t t e n  

v = v, +ve +vm 

i n  which 

(2 .9 )  

(2.10) 
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and N are defined by 
Crg 

(2.11) 

I n  obtaining (2.11) it has been assumed t h a t  the addi t ional  

strains are related t o  the addi t ional  stresses by Hooke’s l a w  f o r  plane 

stress, t h a t  i s ,  

(2.14) 

The addi t ional  stress resu l tan ts  i n  terms of the middle 

surface displacements f o r  a material w i t h  a stress s t r a i n  l a w  as given 

i n  (2.14) are 
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t The addi t ional  middle surface s t r a ins  a re  

(2.16) 

The equilibrium equations are obtained by equating the f irst  

var ia t ion  of the addi t ional  potent ia l  energy t o  zero, t h a t  i s ,  

These lead t o  

=o (2.18) 

Since N , ra ther  than ua , have been selected as dependent 
(33 

variables an addi t ional  equation (compatibility) m u s t  be added f o r  



conrpleteness. This equation is 

The governing set of equations for the shallow s h e l l  thus consis ts  of 

(2.18), (2.19), and (2.20). 

Consider now a segment of a c i r cu la r  cy l indr ica l  she l l .  The 

or ig ina l  s h e l l  middle surface segment can be approximated by a para- 

bola  f o r  segments which can be considered as shallow she l l s .  

i n i t i a l  shape is given by the r e l a t ion  

The 

(2.21) 

Thepbuck l ing  s t a t e  of s t r e s s  i s  taken t o  be one of uniform a x i a l  

compression: 

N;* =-P N,", = o  = c (2.22) 

Equations (2.16) are sa t i s f i ed  iden t i ca l ly  i f  a s t r e s s  func- 

t i on  F is  introduced by means of 

N x x  = 6 0 s  
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In  view of (2.21), (2.22), and (2.23), the s h e l l  equations are  

(827)  Equations (2.24) a re  the Donne11 equations f o r  a cyl indrical  s h e l l  

These equations a re  a l so  Marguerre shallow s h e l l  equations f o r  the 

spec ia l  case of a cyl indrical  panel (28) . 
Equations (2.24) a re  usually consistant only f o r  deflections 

of the order of the thickness of the s h e l l .  However, f o r  modes of 

deformation which involve boundary layers these equations can be used 

f o r  la rger  deflections.  



CHAPTER I11 

SOLUTION OF T m  SHELL EQUATTONS 

3.1. Non-dimensional Form of the Shell Equations 

The experimentally observed buckled shape f o r  a th in  cyl indri-  

c a l  s h e l l  loaded i n  axial compression consists of a s e r i e s  of t r iangular  

shaped regions of nearly zero curvature separated by ridges and valleys 

of large curvature. These tr iangular regions form a s e t  of n circum- 

f e r e n t i a l  buckles. These buckles can extend over the en t i r e  l a t e r a l  

surface of the she l l ,  or there may be only a few a x i a l  rows of buckles 

(6,7).  I n  the following analysis a typical  buckle w i l l  be considered. 

A drawing of an ideal ized buckle i s  shown i n  Figure 3.1. The 

reference plane, Ill , i s  chosen s o  t h a t  the point @ and @ l i e  

i n  Ill when the s h e l l  has buckled. The l i nes  @ , @ , @ , 
and @ represent r idges,  while the l i n e  @ represents a 

valley.  The t r iangular  fields @ and @ a re  assumed t o  

r e t a i n  some curvature i n  the buckled s t a t e .  The unbuckled s h e l l  i s  

shown by means of the dashed curve, the buckled s h e l l  by means of the 

so l id  curves. The parameter k i s  the r a t i o  of the curvature of a 

buckled panel t o  the curvature of the or ig ina l  cylinder. 

t h a t  the "f ie lds"  a re  f la t .  k = 1 means there has been no deforma- 

t ion .  al, a2, a3, and a4 are parameters which aide i n  the descrip- 

t i on  of the buckled panel. They are functions of R , k , and n . 

k = 0 means 

The assumed buckled shape f o r  the s h e l l  i s  almost developable. 

This f a c t  can be rat ional ized if i t  i s  assumed tha t  the buckled shape 

will be such as t o  minimize the potent ia l  energy of the she l l .  The 

-16- 
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Section PA 

R 
'k 

Figure 3.1 .  Geometry of a Buckled Panel. 



-18- 

energy associated with membrane s t ra ins  i s  proportional t o  the s h e l l  

thickness,  while the energy of bending i s  proportional t o  the cube of 

the s h e l l  thickness. Tkus,  since shells are  of small thickness, the 

buckled shape will be one which minimizes the membrarie s t r a i n  energy, 

i . e . ,  a developable surface.  The developability of the buckled surface 

has been noted and discussed by several invest igators  (I (29,30) 

The assumption of developability allows the deformation para- 

meters "2, a3, and a4 t o  be expressed i n  terms of k , n , and the 

undeformed s h e l l  parameters R and h by using geometrical considera- 

t ions alone (Appendix A ) ,  

t i o n  t h a t  the angle i s  small a re  

The resu l t s  of doing t h i s  under the assump- 

The membrane s t resses  i n  the regiom remote from the boundaries 

a re  assumed t o  be uniform a x i a l  tension i n  the buckled s t a t e .  A t ens i l e  

s t r e s s  i s  necessary f o r  equilibrium. (See Appendix B)  e 

Equation (2.24) can be put i n  nondimensional form i n  the 

following way. Because of the order of magnitude assumption concerning 

w(x,s) and W(x,s) , l e t  

W= nhY 

Ly hhy - 
(3.1.2) 
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The i n i t i a l  stress P i s  taken t o  be similar i n  magnitude t o  the 

buckling load as obtained from a l inear  analysis,  tha t  i s ,  

P-o( $1. (3.1.3) 

The radius of the undeformed s h e l l  is not, i n  gerieral, representative 

of the deformed shape; ra ther ,  a more r e a l i s t i c  choice of a represent- 

a t ive  of the deformed shape; rather, a more r e a l i s t i c  choice of a 

representative length i s  made by  means of 

,!*E nRh . 
I n  terms of a rather than R (3.1.3) becomes 

P - - O ( T )  nEh3 . 

Dimensionless space variables are  introduced by means of 

With the assumption t h a t  different. iation with respect t o  5 and (T 

does not s ign i f icant ly  change the magnitude of the function being d i f -  

fe ren t ia ted  and a l so  on the basis of (3  *la5), l e t  



-20- 

Final ly ,  define a nondimensional s t ress  function f by means of 

F nEh3f. (3.1.8) 

This choice implies t h a t  the additional stresses are of the same order 

as the  or iginal  stresses. 

L e t  

a, E nhoc, 

a4 =nhcl, 

(3.1.9) 

and assume t h a t  the number of circumferential buckles i s  of such a 

magnitude t h a t  

n 3h 
- - O ( I )  R * (3 .1 .io) 

This assumption can be ju s t i f i ed  by experiment. 

Lundquist") , Donnell(17), and Tennyson (31) show t ha t ,  i f  only the 

The t e s t s  of 

f i n a l  buckled shape i s  considered, f o r  a l l  of the cylinders tes ted  

n3h -*l i s  a b e t t e r  choice than gal (Appendix C ) .  The assump- 

t ion  - n2h 3 1 can be used t o  show the consistancy of the Donne11 

equations fo r  r a d i a l  deflections of the order of the s h e l l  thickness 

(consistancy i n  the sense t h a t  a l l  terms are of the same magnitude). 

2 

R R 

R 
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I t  i s  a l s o  noteworthy t h a t  the number of buckles decreases as buckling 

proceeds. 

By the use of (3.1.2) through (3.1.9) Equations (2.24) can 

be wr i t ten  

(3.1.11) 

Equations (3.1.11) are the governing s h e l l  equations i n  non- 

dimensional form. If the order-of-magnitude assumptiom which have 

been made are val id  then a l l  terms except those with coeff ic ients  

and 6 7 are near one i n  magnitude. tj2 aIzd e27* are s igni f icant ly  

less than one. The terms i n  (3.1.11) vbickl, are multiplied by tj2 and 

g2y2 are those exhibit ing the highest der ivat ives ,  This i s  typical  

tj2 

2 2  

of equations which describe problems f o r  which a boundary layer type 

solut ion i s  expected. (32) 

To solve E q u t i o n  (301011) consider only the regtor, @ 
and i t s  boundaries. Take the solution %o have the form 

f =f,t f, +fi + f 3  - 

The functions yo and f o  describe the deflections and 

s t resses  i n  the f i e l d .  The functions y1 and fl describe the 

(3.1.12) 
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addi t iona l  def lect ion and stresses i n  the region including the va l ley  

@ and a r e  negligible i n  the r e s t  of the region. Similarly y2, f2, 

Y38 and f3 are functions which are nonnegligible only near ridges 

@ and @ respectively.  

3.2. Solution N e a r  a Valley 

Consider first the solution near and including the va l ley  @ 
I n  t h i s  region the only nonnegligible functions are yo, yl, fo, and 

fl The functions yl and fl are expanded i n  a power s e r i e s  i n  6 . 
Since yl and fl represent the boundary layer port ion of the so lu t ion  

near @ the independent coordinate normal t o  the val ley is s t re tched 

to mgnify the e f f e c t  of the boundary layer .  Then 

i n  which 

The functions J'O and fo should be solut ions t o  (3.1.11) w i t h  

6 equal t o  zero, that is % and should s a t i s f y  
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The or ig ina l  shape of the s h e l l  i n  terms of dimensionless 

variables i s  given by the expression 

The observed buckled shape seems t o  consis t  of a sequence of 

planes joined together a t  the ridges and valleys.  However, equilibrium 

considerations (Appendix B) imply tha t  some curvature i n  the circum- 

f e r e n t i a l  d i rec t ion  i s  necessary. A n u l l  value f o r  k a l s o  does not 

lead t o  boundary layer  equatioos which have so1utior.s which decay as 

the coordinate normal t o  the boundary increases.  

f inal  shape i n  the f i e l d  i s  assumed t o  r e t a i c  some curvature i n  the 

For these reasons the 

cr 

di rec t ion  and 

y+y = 

or 

vary l i n e a r l y  with 5 , t h a t  i s ,  

(3 .2.5)  

The i n i t i a l  s t r e s s  s+,ate e o c z i s t s  only of a compressive a x i a l  

s t r e s s  f i e l d  equal i n  magoikade t o  the applied s t r e s s ,  

s t a t e  the load may be expected t o  be car r ied  a leo  ic t5e ridges and 

valleys,  the ridges carrying compressive loads the valleys t ens i l e  loads. 

If t h i s  i s  the case f o r  equilibrium i n  the radial d i rec t ion  along a 

valley,  the s t r e s s  i n  the f i e l d  must be t ens i l e .  

l e t  

I n  the buckled 

(Appendix B)  Therefore 
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L 

i n  which m i s  an as ye t  ur?kno-m parameter sack that  m = 0 means t h a t  

the t o t a l  stress i n  the buckled s t a t e  i n  tke f i e l d  vanishes. 

The functions yo and f o  as given i n  (3.2.6) and (3.2.") 

s a t i s f y  Equations (3.2.3) except along the  l i n e  5 = 0 . 
Substi tuting (3.2.1) and (3.2*2) i n  (3.1.11) and collecting 

terms with l i k e  powers of 6 as coefficients leads t o  the following 

sets of equations : 

(3.2 9 )  

2 
~ R , W Y Y .  +ky\z,v+ -yi,pc +yii,~yli/ar = 0 * 

The remaining sets of equations can be wri t ten down i n  a similar way. 

For a first approximation consider orly 

i y =  y o  t-sy,, 

f = f o  +sS,, . 
(3.2 .lo) 
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Tlie functions yll, fll, must be chosen to satisfy the symmetry 

and continuity conditions violated by yo and fo  and they should decay 

as I Jr I increases. Therefore yll satisfies the following conditions : 

continuous at 5 = 0 

In addition symmetry requires that 

Since only $ derivatives appear in Equation (3.2.8) and 

because of the observed buckled shape assume 

( 3.2.11) 

(3.2.12) 

(3.2 -14) 
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Then the equa+uions f o r  yll and fll become 

Two cases m u s t  be considered i n  solving (3.2.15) , 

Case I 

For t h i s  case the solution t o  (3=2,13) i s  (Appendix D )  

(3.2.16) 

7 
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i n  which 

A e%. 

The solutions t o  (3.2.15) given i n  (3.2.17) and (3.2.18) a re  chosen so 

t h a t  yll and the boundary layer  s t resses  decay as I Jr I increases. 

The use of (3.2.11) and (3.2.13) gives the following values 

f o r  the constants i n  (3.2.17) and (3.2.18): 

(3.2.20) 

Thus, t o  a f irst  approximation, 
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or in terms of the o r i g i n a l  variables, 
7 

(3 .2  22 )  I 
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The addi t ional  stress are 

rVkX = (Itrn)P 

Nx3 = 0 (3.2.23) i 
The axial and circumferential displacements can be calculated 

s , x  
and u + u 

x,s  
by solving Equations (2.15) fo r  , U 

s,s 

(3.2.24) i 
Since the compatibility of the s t r a ins  and displacements has 

been assured, Equations (3.2.24) can be integrated by using the results 

of Equations (3.2.23), (3.2.22) and (2.21). The constants of integra- 

t i on  can be found by making Nxs , as 

be zero, and then sa t i s fy ing  condition (3.2.12). 

condition can be s a t i s f i e d  only in t h e  average; hence the solut ion i s  

approximate. The expressions f o r  ux and us are 

calculated from Equation (2.15), 

It i s  noted t h a t  t h i s  
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q2< 0 
W i t h  the introduction of 

I 
(3.2.26) 

(3.2.27) 

the solution t o  Flquation (3.2.15) corresponding t o  (3.2.17) and (3.2.18) 

is 

W O  i 

(3.2.28) 

w o  . 1 
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The use of the continuity conditions a t  \Ir = 0 gives the fo l -  

lowing values for  the constants i n  (3.2.28) and (3.2.29) : 
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or  i n  terms of the or ig ina l  variables 

The addi t ional  s t resses  are 

N, =Cr+m)P 

N x s  0 

The displacements i n  the x and s direct ions a re  
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) 3.2.341 

i 
i 
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3.3. Solution Near a Ridge 

Consider the solut ion t o  (301011) near the ridge 

Because of the symmetry of the buckled shape, the solut ion f o r  t h i s  

r idge su i tab ly  modified is  val id  f o r  a l l  other ridges.  

To consider the ridge @, a new reference plane, n2 , 
and a new coordinate system a re  chosen. The coordinate system i s  

selected t o  l i e  i n  a plane containing a s t r a i g h t  l i n e  Joining the 

points @ and @ i n  the buckled s t a t e  and orthogonal t o  a radius 

of the unbuckled cylinder a t  the midpoint of the l i n e  @. The co- 

ordinates used t o  describe the solution a re  taken t o  l i e  i n  Ir2 i n  

the direct ions along the ridges @ and is. (Figure 3.1.) 

This new reference plane, n2 , does not change the form of 

the basic equations(33), but  the displacement functions a re  now taken 

w i t h  respect  t o  T[2 . 
circumferential  buckles is  large and therefore the angle 

<< 1 The slope of TI2 with respect t o  ITl i s  - . t h a t  - 
;2 2n 

This i s  a su f f i c i en t  condition that the form of the equations be the 

This change is  possible since the number of 
Ti x is such 

3l Ti2 

same. 

The governing equations are rewri t ten denoting the new 
L .  

dependent var iables  by primes and the new independent variables by 

a bar whenever confusion might a r i se .  They a re  
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The i n i t i a l  stress, P , i s  the same i n  e i t h e r  ITl o r  IT2 . The co- 

ordinates 'X and S are the projections of x and s on $ . x 

i s  an axial coordinate and s a circumferential one. 

- 

Again (3.3.1) i s  put i n  nondimensional form by using the 

following transformations : , 

The nondimensional equations are 
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-3.4) 

i n  which 

The coordipate system p , ( is  oriented as shown i n  Figure 

3.2. It should be noted t h a t  the coordinates p and 5 are  orthogonal 

only in the special  case p = 1 . 
The or ig ina l  shape of t h e  cylinder i s  again approximated by 

the parabola 
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Figure 3.2. Orientation of the p , 5 Coordinate System. 

i n  which 

0(5=nh -Qr 

By the use of (3.3.3), Equations (3.3.4) become 
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As i n  the solut ion fo r  the region including the val ley 

the functions y '  and f T  are teken t o  be the sum of two terms, the 

first t e r m  being the solut ion i n  the f i e l d  ar?d the cther representing 

the boundary layer .  

s e r i e s  i n  F and the independent variable [ i s  s t re tched t o  magnify 

the e f f e c t  of the boundary layer. 

The boundary layer t e r m  i s  expanded i n  a power 

Le t  

(3.3.9) 

i n  which 

The functions- y& and- f& correspond t o  yo and f o  ; they 

d i f f e r  i n  t h a t  yA and f& are taken w i t h  respect t o  lT2 . y;> and 

f& 6 = 0, i n  view of the preceding r e su l t s  t h i s  

implies 

s a t i s f y  (3.3.8) with 
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Subst i tut ing (3.3.9) and (3.1.11) i n  (3.3.8) and col lect ing 

terms with l i k e  powers of 

sets of equations (only the f i rs t  two sets of equations are given): 

6 as coefficients leads t o  the following 
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It i s  easily sham (Appecdix A) tha t  

Again as i n  the solut ion f o r  the valley @ as a first 

approximation, take only the f i r s t  two terms i n  (3.3.9) 

and f21 be functions only of 7 , that i s  

and l e t  y21 

The governing equations for  and f21 thus become y21 

(3.3.17) 

Because of the s imilar i ty  betweer: (3.3,17) and (3.2.15), a solut ion of 

(3.3.17) i s  

Case I 



in which 

AI zG COS Q 
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The cont inui ty  and symmetry conditions a t  the ridge are 

I (yl+y’) continuous a t  = o 

(y’+Y’),s =o a t  c = O  

(y+yjIG continuom a t  f = o 

a t  c = O  

I 

f , x  10 a t  ( = O m  (3.3 -23) 

The use of (3.3.22) and (3.3.33) t o  f i nd  the unknown constants 

i n  (3,3.19) and (3.3.20) leads t o  

(3.3 024) 
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Thus 

The functions y' and f' are 

(e< 0) I 
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Equations (3 .3.26) ,  (3 .3.27) ,  and (3.3.28) can be wri t ten  i n  

terms of the or ig ina l  variables as follows: 
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Tbe stresses are A a n d  again by 

function, namely, 

ifferentiating L e  stress 

( 3 3.31) 
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The components of the addi t ional  s t r e s s  i n  the p and [ direct ions 

are a l s o  of i n t e r e s t .  They are 

I 
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i s  t h  Nr;P x m a l  stress r e su l t an t  a i r  Ni 5 ted i n  the p direct ion.  

is  a normal s t r e s s  resu l tan t  orthogonal t o  the ridge @ . N' is  a 
CJ 

shear s t r e s s  resu l tan t  i n  the plane of the ridge 0. 
The displacement components u r  and u could now be calculated.  

i P 
A s  i n  the solut ion f o r  the val ley @ , it is  not possible t o  make the 

zero everywhere along the ridge. These quant i t ies  do displacement 

not  add s igni f icant ly  t o  the solution and a re  not presented. 

\.- 

us 

Case I1 

L e t  

then 

( 3  3 34) 



-49- 

The use of the symmetry and continuity conditions t o  

evaluate the constants as i n  Case I gives 

(3.3937) 

Thus the functions y1 and f '  are 
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p > 0 .  

(3 3.39) i 
Equations (3.3.38) and (3.3.39), a r e  wr i t ten  i n  terms of the original 

variables ; 



. . 
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> o .  

The addi t ional  stress are  

I 
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3.4. Equilibrium Considerations 

"he force i n  the s h e l l  consists of t h a t  i n  the boundary layers 

and t h a t  i n  the f i e l d .  The a x i a l  force i n  a ridge i s  

X + L  
Qx f ~R(l-k)ru\P 

m k  L = Z  J Kl , *dS=-  1 
-a0 

while the circumferential force i n  a valley i s  

The t o t a l  external  load m u s t  be equi l ibrated by the in t e rna l  

force i n  the she l l .  Therefore 

or 

Y 
(3.4.3) 

(3.4.4) 

A p lo t  of m versus k i s  shown i n  Figure 3.3. Note t h a t  i f  

m i s  t o  be posit ive then k m u s t  be less than one ha l f .  

The circumferential and a x i a l  equilibrium a t  a juncture of 

valleys and ridges i s  obvious from the syrmnetry of the deformed she l l .  

radial equilibrium equation a t  a j o i n t  i s  s a t i s f i e d  ident ica l ly  by the 

The 

stresses found and therefore does not give any new information about the 

she l l .  
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1 I I I 1 

THE AXIAL STRESS RESULTANT 

IN A "FIELD" IS mP WHERE 

P IS THE APPLIED AXIAL 

STRESS RESULTANT 

k IS THE RATIO OF THE 
CURVATURE OF THE FIELD TOTHE 

Figure 3.3. Relationship Between m and k for Equilibrium 
for a Force Prescribed Buckled State. 



CHAPTER IV 

rnSULTS 

The r e s u l t s  of t h i s  work consis t  of mathematical 

expressions f o r  the  deformations and s t r e s ses  f o r  a buckled panel 

of a cy l indr ica l  she l l .  The mathematical expressions and typ ica l  

graphical representations of them are  presented here. 

The f i n a l  buckled shape f o r  the  region of the buckled 

panel which includes a val ley i s  

i n  which 

x -  - B x  

A 2s 5 = x  
n3h 

9 7 -  

A, - j a  = 
c 

I?/@ 
I - -  I (1-2k)  

(4 .3)  i 
- 55- 
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p z- 9 x  
1, 

(403) 
cont'd 

h 
The coordinates x and $ are  chosen f o r  convenience i n  

displaying the r e s u l t s  graphically. 

Figure 4 .1  shows the buckled shape f o r  an axial sect ion 

through the panel a t  2 = 0. 

Figure 4.2 shows how the equilibrium configuration changes 

as  a function of the applied axial load. 

Figure 4.3 shows haw the equilibrium configuration changes 

as  a function of the curvature remaining i n  the f i e l d .  

It should be noted that  f o r  a l l  of the r e s u l t s  shown in 

Figures 4.1, 4.2 and 4.3, the wavyness of the mathematical solution 

i s  not evident because of i t s  re la t ive ly  long wave length. This is 

s igni f icant  since no wavyness has been noted experimentally 

The f i n a l  buckled shape f o r  a region of the  buckled panel 

which includes a ridge i s  

le 7 4  
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Figure 4.3. Final  Shape of the Buckled Panel for 8 = 0 ,  x 7 0 . 
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i n  which 

Figure 4.4 shows the  f i n a l  buckled shape f o r  a section at 

p = 0 .  

The circumferential s t ress  i n  a val ley i s  given by the 

expressions 

Similarly the  t o t a l  s t r e s s  resul tant  directed along the  ridge is  

Figures 4.5 and 4.6 s h w  how - var ies  w i t h  9 and haw 
pE 

the load parameter P/PE a f f ec t s  t h i s  s t r e s s  d i s t r ibu t ion .  

Figure 4.7 shows how %2 var ies  with 5 .  
PE 
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Figure 4.6. Circumferential Stress ' i n  a Valley f o r  x > 0 . 
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The a x i a l  t e n s i l e  s t ress  i n  the f i e l d  i s  given by the  

express ion 

(4.10) 

The s igni f icant  r e su l t  here i s  that i f  k i s  s igni f icant ly  

less than 1/2, the  t e n s i l e  s t ress  i n  the f i e l d  w i l l  be s m a l l  (e.g., 

fo r  k = .lo, = .50 , the  tens i le  s t r e s s  i n  the  f i e l d  i s  only 
PE 

.0625 pE). 

The a x i a l  displacement % can not be made continuous 

along the va l ley  and the displacement normal t o  the ridge can not be 

made continuous a t  the ridge using the approximations employed herein. 

A p lo t  of 

t i n u i t y  condition a t  the  va l ley  is violated, (Figure 4 .8) .  The 

%/h along a va l ley  indicates the extent t o  which the  con- 

magnitude of t h i s  discrepancy decreases as k decreases. 

The mathematical expressions other than those l is ted above 

which were found i n  t h i s  investigation are  as  follows: 

For the region including a valley, 
A 

(4.11) 
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Nxs= 0 

For a region including a ridge, 

(4.16) 

(4.18) 
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CHAPTER V 

CONCLUSIONS 

The solution, presented in this work, t o  the problem of 

finding an equilibrium configuration f o r  a buckled cy l indr ica l  s h e l l  

is  not  exact, since the axial displacement can not be m a d e  continuous 

within the approximations used i n  the analysis  (Figure 4.8).  The 

e f f e c t s  of the  interact ions between the  ridges and val leys  of the  

buckled shape were a l so  not considered. 

results seems t o  indicate t h a t  t h i s  is  a reasonable approximation 

t o  the  theo re t i ca l  determination of the  postbuckled state of the  

she l l .  

However, the  nature of the  

The solut ion was carried out by assuming some res idua l  

curvature i n  the f i e l d  of the buckled s t a t e .  There i s  l i t t l e  

experimental evidence t o  indicate that the buckles a re  not f la t .  

The r e s u l t s  however indicate that very l i t t l e  curvature is necessary 

i n  the buckled s ta te ;  the experimental evidence i s  therefore incon- 

clusive (Figure 4.1).  The amount of the discont inui ty  i n  the a x i a l  

displacement decreases as the buckle becomes f la t ter  (Figure 4.8). 

Comparing the experimental buckled shape with the theo re t i ca l  

shape is  fur ther  complicated by the f a c t  that when buckling has pro- 

gressed t o  the  point  where the valleys and ridges are sharply defined, 

the  shell material w i l l  have yielded and the e f f e c t s  of having a 

nonelastic material w i l l  become apparent. 

-69- 
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An improvement i n  the solution could conceivably be 

obtained by considering higher order terms i n  the expansions of 

the boundary layer  functions. 

consider the f i e l d  s t r e s s  t o  be nonuniform. The curvature necessary 

f o r  the boundary layer  might a l s o  be considered t o  be inherent i n  

the  boundary layer  ra ther  than the  f i e l d .  These observations are 

speculation and no proof that they w i l l  work i s  available.  

Another poss ib i l i t y  would be t o  

One in te res t ing  r e s u l t  of t h i s  investigation i s  the f a c t  

t ha t  the no unique equilibrium load was found, since many buckled 

configurations are  possible f o r  the same external  load ( i .e . ,  Many 

values of k a re  possible (Figure 4.3) ) . 
This work sheds no l i g h t  on the problem of how the shell 

departs from the prebuckled s t a t e .  

buckled equilibrium configuration which 

buckled shell can be found analyt ical ly  and that the axial load 

necessary f o r  equilibrium i s  s ignif icant ly  l e s s  than the buckling 

load. 

However, it has shown t h a t  a 

resembles quite w e l l  the  

T h i s  agrees w i t h  the experimental work on t h i s  problem. 



APPENDIX A 

GEOMETRIC HELATIONS FOR THE BUCKLED SEELL 

The relations between the s h e l l  deformation parameters 

a2, a3, a4,, a5, n and k and the na tura l  s h e l l  parameters R and 

h are  developed in  t h i s  appendix. 

The deformation i n  the f i e l d  i s  assumed t o  be inextensiable, 

theref ore 

3l X = k - ,  
n 

(A-1 )  

It follows from the geometry of the deformation that 

a cos 5 = a (A-2 1 1 n  2 *  

2 
i s  negligible when compared with 1, therefore 

n &  For large 

al - &2 * (A-3 

Other geometric re la t ionships  are 

a2 + a3 = 

n R/k sinX = ( R  + al) s i n  - n 

R ( l  - cos E) n 

= RJk (1 - COSX) . a4 

a2 i s  found by subst i tut ing (A-2) i n  (A-5)  t o  give 

a2 
R 
k 
- s i n  k 

n 
cot 5 

n 
- R COS - n 

n o  

(A-4 

(A-5 

(A-6 1 

(A-7 
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Figure A-1. Geometry of a Buckled Pctnel. 

“I 

/ 
Figure 6-2. Geometry of a Buckled Panel. 
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i s  now calculated using ( A - 7 )  and (A&),  t h i s  gives "3 

s i n  k J( cot 5 ) , 1 a3 = R ( l  - - k n n 
(A-8  1 

Again as i n  Equation ( A - 3 )  the assumption of E a s m a l l  angle leads 

t o  
2 ' (1 - k2) "2 - - 6n2 

2 

6n2 
a3 - e (2  - k2) 

n2R k , "4 - 2 
It follows from the  geometry of the  s h e l l  that 

n ( R  + al) cos - = R + al - "5 . 2n 

(A-9 1 

(A-10 ) 

( A - 1 1 )  

I n  l i n e  with the approximations being employed a5 i s  found t o  be 

2 n R  
a5 - &12, ( A - 1 3 )  

The following combinations appear i n  the t ex t :  

2 
n2R (1 - k ) ( 2  - k )  = (1 - k ) ( 2  - k )  ( A - 1 4 )  z 7  a3 - a4 R 

(A-15 '2R fi2l-h a2'+ a3 - a4 h, (1 - k )  = - (1 - k) 
2g 

( A - 1 6 )  



. 

is 
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(A-17 1 

x% - k) = - x2nh (1- k) (A-18)  
5 - F(1 g 

a2 + a3 - 2a4 + 4a 

a + " l j - 4 a 5  * 0 ,  2 

Another useful relationship w h i c h  has been used in the text 

(A-20) 
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BENDM B 

EQUILIBRIUM CONSIDERATIONS 

If the l imit ing case of an extremely th in  s h e l l  is  con- 

sidered so that in the buckled shape the ridges and val leys  are 

l ines ,  it can be shown that the f i e l d  must have a t e n s i l e  s t r e s s .  

Consider the equilibrium of aval ley in the z direct ion.  

Let 

shape of the val ley has some curvature, a s  has been assumed, a 

canponent of this force, in  the posit ive z di rec t ion  w i l l  ex i s t .  

Tv , the force i n  the valley, be tens i le ,  then if the f inal  

Figure B-1. Equilibrium of a Valley. 

The z canponent of the force i n  a val ley i s  

or 
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The only way t h a t  t h i s  va l ley  could be i n  equilibrium is  

f o r  an axial t e n s i l e  s t r e s s  t o  ex i s t  i n  t he  f i e l d .  If t h i s  stress 

is  assumed t o  be uniform, then the z component of the force i n  

the  f i e l d  i s  

o r  

An equilibrium requirement i s  that the  r e su l t i ng  force i n  

the  z d i rec t ion  equal t o  zero. T h a t  is, 

2TFz - 2Tvz = 0 . (3-4 1 

If follows from (B-2), (B-4) and (B-5) that 

n R ( 1  - k)mP 
P a  

Tv = s 

If the  force Tv 

compressive. 

i s  compressive then the f i e l d  stress i s  also 

I n  contrast  if the equilibrium of a ridge i s  considered i n  

the same way the conclusion i s  that  f o r  a t e n s i l e  a x i a l  s t r e s s  i n  the 

f i e l d  the force i n  the ridge is  compressive. 

Figure B-2. Equilibrium of a Ridge. 
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The z component of the force in a ridge i s  

The z component of the force i n  the f i e l d  is  

Again since there  are two ends and two s ides  t o  the ridge 

or 

(B-10) 

It should be noted t h a t  the Equation (B-6) agrees with 

Equation (3.4.2) and if the 

it would be the same as  (3.4.1). 

x cmponent of (B-10) were t o  be found 

Since a compressive external load  i s  being considered the  

forces  in the ridges should be compressive; t h i s  leads t o  the  conclusion 

t h a t  a t e n s i l e  f i e l d  stress must ex i s t .  

It i s  important t o  note, a t  t h i s  point, that the conclusion 

t h a t  a t e n s i l e  stress in  the f i e l d  must e x i s t  can a l so  be drawn on 

less physical grounds. A negative value of m does not allow f o r  a 

buckled shape which closely resembles the  observed shape since solu- 

t i ons  t o  the boundary layer  equations f o r  negative 

as the coordinate normal t o  the  boundary increases.  

m t o  not decay 



APPENDIX c 

EXpERlMENTAL RESULTS 

To demonstrate the va l id i ty  of the assumption t h a t  in 

i s  near one i n  value, typ ica l  eae r imen ta l  n3h the  buckled state - 
R - 

r e s u l t s  are  quoted. For capa r i son  R n'h is also calculated. 

Investigator n 
2 n h  
R 
- 

Tennyson (31) 6 154 1.40 23 

Lundquist (7)  9-10 333-362 2.01-3.33 .224-.33 

10 455 -460 2.2 .22 

10-13 625 -714 1.4-3.5 .l4-.27 

11 6 79-757 1.7-2.0 .16-.18 

11-13 909-PO 1.4-2.4 .13- i g  

12-15 1270-1415 1.2-2 e 7 .io-. 18 

Donne11 (17) 10 483 2.1 .21 

12 1284 1 . 3  .11 

10.5 1383 .84 .08 

8 314 1.6 .20 

10 897 1.1 .11 
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APPENDIX D 

SOLUTION OF THE BOUNDARY LAYER EQUATIONS 

The solution of Equation (3.2.15) is  presented i n  this 

Appendix. Equation (3.2.15 ) i s  

Let 
A 

The subst i tut ion of (D-2) i n  (D-1)  leads t o  

i = 1, 2, 3, ... 8 (D-2) 

For a nontr ivial  solution t o  (D-3) and (D-4) t o  e x i s t  

A 
The roots  Ai = 0 are  not  associated with exponentially 

decaying solutions hut with polynomial solutions.  These polynomial 
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solut ions must be rejected for  yll since a l l  solutions must 

decay as increases.  A polynomial of first order w i l l  not 

e f f e c t  the stresses and can be retained. Such a solution w i l l  

be necessary t o  s a t i s f y  the  condition that f , k  be zero a t  5 = 0. 

The four roots  t o  (D-5) which give rise t o  exponential 

solut ions are 

Case I 

Let 

Then 

To faci l i ta te  the solution the following parameters a re  defined: 

1 cos@ 5 rn 

8 A1 2 d 2  cos - 2 

- j 7  A2 = 2 s i n  - 
2 

(D-10) 
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The use of (D-10) allows the roots (D-9) t o  be expressed as 

h 

fi% = -h(A1 + iA2) 

hl = h(A1 + iA2) 

A = h(A1 - i A 2 )  5 
A 
14 = -h(A1 - iA2) . 

The general solution is  

The subst i tut ion of (D-12)  i n  (D-3) leads t o  

Id 

mP 

dl = - (-1 + is) c1 

d2 = - (-1 + iq) c2 

2k 

2k 

- EE (-1 - iq) c3 

d4 = E (-1 - iq) c4 . 

d3 - 2k 
- 

2k 

Thus the solution f o r  fll i s  

h A 

(D-13 

(D-14) 

The r e a l  pa r t s  of (D-12) and (D-14) are 
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A linear function of J, is added to fll to allow condition (3.2.13) 

to be satisfied. This gives for the solution 

t 

t bs 

Case I1 

Let 

(D-20) 
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Then 

Le t  

The use of (D-22)  allows the roots t o  be expressed as  

The general 

I f i  

3 

3 5- A A 4  

h l =  h A  

% =  - A A  

(D-21) 

(D-23 

3lution for yll is iven by (D-12) .  The solution for 

fll is found by subst i tut ing (D-12) i n  (D-3) and using the re la t ions  

f o r  Case 11. This leads t o  

(D-24) 

therefore  the solution for fll i s  



-84- 

The renaming of the constants of integration and the addition of a ~ 

linear function t o  f l l  gives 

Y >o .  

(D-26) 
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